
OXO - Python – Microsoft Arcade

1

The following instructions will take you through the steps of creating a game where you play

Noughts and Crosses against the computer. The computer will play as Crosses leaving you to play as

Noughts and always go first.

Use the D-Pad to select where to place your piece and then press A to play it. The computer will then

think for a few moments before making its own move.

Controls
To control the players character, use the direction keys on the console. Alternatively, it may be

easier to use the keyboard mappings for the keys as follows

 Up

(↑ or W)

Left

(← or A)

 Right

(→ or D)

 B

(E, X or Enter)

 A

(Q, Z or Space)

 Down

(↓ or S)

OXO - Python – Microsoft Arcade

2

Step 1 – Setup MakeCode arcade for Python development
Navigate to https://arcade.makecode.com and create a new game using the name Chase-python.

Your screen should like as follows.

https://arcade.makecode.com/

OXO - Python – Microsoft Arcade

3

Python is currently an experimental feature, so we have to turn it on. We do so by clicking the cog in

the top right-hand corner of the screen and then clicking “About…” as illustrated in the screen shot

below

OXO - Python – Microsoft Arcade

4

The About dialog should now be displayed as shown in the screen shot below.

Click on Experiments to bring up the range of experimental features. A Static Python feature should

be shown. Click on the Static Python icon which will enable it. Then click on the “Go back” button in

the top left hand corner. This will take you back to the normal editor.

You will now see along the top of the screen the Python tab. Congratulations, Python is now eaabled

for MakeCode Arcade.

OXO - Python – Microsoft Arcade

5

Step 2 – Draw the background
We will be using these values to control some aspects of the game, such as who’s turn it is to play or

what the result of the game is. These values are added as different kinds of sprite.

We also setup the background for the game and draw the board. The code below uses a background

colour of black (colour number 15) and for the lines of the board the colour cyan is used (colour

number 6). The colours that are available for use are numbered 0 to 15 so experiment to pick some

colours that you like (colour zero is transparent).

@namespace

class SpriteKind:

 Blank = SpriteKind.create()

 Nought = SpriteKind.create()

 Cross = SpriteKind.create()

 Draw = SpriteKind.create()

 Cursor = SpriteKind.create()

Setup the background board by drawing the lines

scene.set_background_color(15)

background = image.create(120, 120)

background.fillRect(35, 0, 5, 120, 6)

background.fillRect(80, 0, 5, 120, 6)

background.fillRect(0, 35, 120, 5, 6)

background.fillRect(0, 80, 120, 5, 6)

scene.set_background_image(background)

Once you have finished don’t forget to run your game to make sure that it works. You should see a

black background with a blue Noughts and Crosses board like the one below.

OXO - Python – Microsoft Arcade

6

Step 3 – The player indicator
We are now going to add an indicator to the bottom right-

hand corner of the screen which will show the piece

(Nought or Cross) of who’s turn it currently is to play. Once

you’ve added this code and run the game, it should look

like the picture below.

Remember to use the paint tool to draw the images that

we will be using for the Noughts and Crosses as it will be

much easier than doing it by hand. The images for the

Noughts and Crosses should be 16 x 16 pixels in size. Don’t

feel constrained to use plain old Noughts or Crosses. Use

your creativity and imagination to draw your own icons or

pick some from the gallery. Tacos vs Ducks?

The code for tracking the current player makes use of a

Python class with two items of static data. Static data is

similar to global variables and placing these two items in

the class as static data provides a useful way to group the

data together.

16 x 16 pixel Nought

Nought = img("""

 2 2 2 2 2 2 2 2

 . . 2 2 2 2 . .

 . 2 2 .

 . 2 2 .

 2 2

 2 2

 2 2

 2 2

 2 2

 2 2

 2 2

 2 2

 . 2 2 .

 . 2 2 .

 . . 2 2 2 2 . .

 2 2 2 2 2 2 2 2

""")

16 x 16 pixel cross

cross = img("""

 3 3

 3 3 3 3 .

 . 3 3 3 3 . .

 . . 3 3 3 3 . . .

 . . . 3 3 3 3

 3 3 . . . 3 3

 3 3 . . 3

 3 3 3

 3 3

 3 3 . 3

 3 . . . 3 3

 . . . 3 3 3

 . . 3 3 3

 . 3 3 3 3 . . .

 3 3 3 3 . .

OXO - Python – Microsoft Arcade

7

 3 3 3

""")

class CurrentPlayer:

 kind = SpriteKind.Nought

 sprite = sprites.create(Nought, SpriteKind.player)

CurrentPlayer.sprite.set_position(140, 100)

def setup_nought_player():

 CurrentPlayer.kind = SpriteKind.Nought

 CurrentPlayer.sprite.set_image(Nought)

def setup_cross_player():

 CurrentPlayer.kind = SpriteKind.Cross

 CurrentPlayer.sprite.set_image(cross)

Changes to the next player

def setup_next_player():

 if CurrentPlayer.kind == SpriteKind.Nought:

 setup_cross_player()

 else:

 setup_nought_player()

Step 4 – Selector
Now it is time to add in a selector which allows the player to

choose which square to place their piece in. We will use a

similar technique as we did for the current player of using a

Class with static (i.e. global) variables is used to control the

position of the selector. We also need to hook the selector into

the d-pad button events.

We also provide for “wrapping” the selector. This is where

pressing up when the selector is in the top row results in the

selector showing on the bottom row as it has wrapped around.

The same is true for pressing down when in the bottom row

and left to right.

4 x 4 pixel blank

blank = img("""

""")

24 x 24 pixel cursor

cursor = img("""

 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

OXO - Python – Microsoft Arcade

8

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7 . 7

 7

""")

class Selector:

 x = 1

 y = 1

 sprite = sprites.create(cursor, SpriteKind.Cursor)

update_selector()

def update_selector():

 Selector.sprite.set_position((Selector.x * 40) + 20, (Selector.y * 40) +

20)

def reset_selector():

 Selector.x = 1

 Selector.y = 1

def hide_selector():

 Selector.sprite.set_image(blank)

 update_selector()

def show_selector():

 Selector.sprite.set_image(cursor)

 update_selector()

def move_selector_left():

 Selector.x = Selector.x - 1

 if Selector.x < 0:

 Selector.x = 2

 update_selector()

def move_selector_right():

 Selector.x = Selector.x + 1

 if Selector.x > 2:

 Selector.x = 0

 update_selector()

def move_selector_up():

 Selector.y = Selector.y - 1

 if Selector.y < 0:

 Selector.y = 2

 update_selector()

def move_selector_down():

 Selector.y = Selector.y + 1

 if Selector.y > 2:

 Selector.y = 0

 update_selector()

def left_pressed():

 if CurrentPlayer.kind == SpriteKind.Nought:

 move_selector_left()

OXO - Python – Microsoft Arcade

9

def right_pressed():

 if CurrentPlayer.kind == SpriteKind.Nought:

 move_selector_right()

def up_pressed():

 if CurrentPlayer.kind == SpriteKind.Nought:

 move_selector_up()

def down_pressed():

 if CurrentPlayer.kind == SpriteKind.Nought:

 move_selector_down()

controller.left.onEvent(ControllerButtonEvent.PRESSED, left_pressed)

controller.right.onEvent(ControllerButtonEvent.PRESSED, right_pressed)

controller.up.onEvent(ControllerButtonEvent.PRESSED, up_pressed)

controller.down.onEvent(ControllerButtonEvent.PRESSED, down_pressed)

Step 5 – Create the board sprites
This next step is to create a 3 x 3 array of sprites to represent each of the possible positions where a

piece can be played. Each sprite is setup in the correct location and set it to a blank image. When a

piece is played on the board (done in code in a later section) we can change the image of the sprite

to the correct piece. Arrays are declared and their elements access with the [and] characters.

board = [[

 sprites.create(blank, SpriteKind.Blank),

 sprites.create(blank, SpriteKind.Blank),

 sprites.create(blank, SpriteKind.Blank)

],[

 sprites.create(blank, SpriteKind.Blank),

 sprites.create(blank, SpriteKind.Blank),

 sprites.create(blank, SpriteKind.Blank)

],[

 sprites.create(blank, SpriteKind.Blank),

 sprites.create(blank, SpriteKind.Blank),

 sprites.create(blank, SpriteKind.Blank)

]]

Place the pieces in their correct location.

for x in range(3):

 for y in range(3):

 piece = CurrentPlayer.sprite

 piece = board[x][y]

 piece.set_position((x * 40) + 14, (y * 40) + 14)

Reset all of the pieces to blanks as well as the board itself

def clear_board():

 piece = CurrentPlayer.sprite

 for x in range(3):

 for y in range(3):

 piece = board[x][y]

 piece.set_image(blank)

 piece.set_kind(SpriteKind.Blank)

Returns if the board is full or not

def board_full():

 piece = CurrentPlayer.sprite

 for x in range(3):

 for y in range(3):

 piece = board[x][y]

 if piece.kind() == SpriteKind.Blank:

 return False

 return True

OXO - Python – Microsoft Arcade

10

Step 6 – Placing the players pieces.
After this step you should be able to place noughts in

every space. The screen shot opposite shows the top

two rows filled up.

What we do is create two functions (can_play_here

and play_move) that are hooked into the A-button

press event. If the board is empty (contains a Blank) at

the location indicated by the selector then we set the

piece to the desired kind (Noughts in this case).

The play_move function does not yet contain the

instructions for the computer to move yet so we will

add to it in a later step.

We also provide a function to start a new game. Once

you’ve added this code to your game, try it out.

Returns true if the board is blank at the given location.

def can_play_here(x, y):

 piece = CurrentPlayer.sprite

 piece = board[x][y]

 if piece.kind() == SpriteKind.Blank:

 return True

 return False

def play_move(x, y, kind):

 if can_play_here(x, y):

 piece = CurrentPlayer.sprite

 piece = board[x][y]

 piece.set_kind(kind)

 if kind == SpriteKind.Nought:

 piece.set_image(Nought)

 else:

 piece.set_image(cross)

def a_pressed():

 if CurrentPlayer.kind == SpriteKind.Nought:

 if can_play_here(Selector.x, Selector.y):

 play_move(Selector.x, Selector.y, CurrentPlayer.kind)

controller.a.onEvent(ControllerButtonEvent.PRESSED, a_pressed)

The actual game logic starts here.

def start_new_game():

 hide_selector()

 reset_selector()

 clear_board()

 setup_nought_player()

 show_selector()

Start the game

start_new_game()

OXO - Python – Microsoft Arcade

11

Step 7 – Working out if the game has finished
We now need to write the algorithm that works out who has won (if anyone). This method checks all

of the possible combinations of vertical, horizontal or diagonal wins as well as a draw. If none of

those conditions hold then the game is not finished, and the result is None. For a win, we return the

type of piece that has won. The possible results from the get_result method are:

• SpriteKind.Nought

• SpriteKind.Cross

• SpriteKind.Draw

• None

Returns the result of the board. This can be Nought or Cross for

their win, Draw for a Draw or None for no result.

def get_result():

 # Check for a vertical win

 for x in range(3):

 top = CurrentPlayer.sprite

 middle = CurrentPlayer.sprite

 bottom = CurrentPlayer.sprite

 top = board[x][0]

 middle = board[x][1]

 bottom = board[x][2]

 if top.kind() != SpriteKind.Blank:

 if top.kind() == middle.kind()and top.kind() == bottom.kind():

 return top.kind()

 # Check for a horizontal win

 for y in range(3):

 left = CurrentPlayer.sprite

 middle = CurrentPlayer.sprite

 right = CurrentPlayer.sprite

 left = board[0][y]

 middle = board[1][y]

 right = board[2][y]

 if left.kind() != SpriteKind.Blank:

 if left.kind() == middle.kind() and left.kind() == right.kind():

 return left.kind()

 # Check for diagonal win

 centre = CurrentPlayer.sprite

 centre = board[1][1]

 if centre.kind() != SpriteKind.Blank:

 top_left = CurrentPlayer.sprite

 bottom_right = CurrentPlayer.sprite

 top_left = board[0][0]

 bottom_right = board[2][2]

 if top_left.kind() == centre.kind() and centre.kind() == bottom_right.kind():

 return centre.kind()

 bottom_left = CurrentPlayer.sprite

 top_right = CurrentPlayer.sprite

 bottom_left = board[0][2]

 top_right = board[2][0]

 if bottom_left.kind() == centre.kind()and centre.kind() == top_right.kind():

 return centre.kind()

 # Check for draw

 if board_full():

 return SpriteKind.Draw

 return None

OXO - Python – Microsoft Arcade

12

Step 8 – Check for a result in play_move
We now can modify the play_move method that you create in step 6 to check for a result in the

game (and start a new game if a result was found). Locate the play_move method that you already

have and add the highlighted code to the end of that method.

def play_move(x, y, kind):

 if can_play_here(x, y):

 piece = CurrentPlayer.sprite

 piece = board[x][y]

 piece.set_kind(kind)

 if kind == SpriteKind.Nought:

 piece.set_image(Nought)

 else:

 piece.set_image(cross)

 result = get_result()

 if result == SpriteKind.Nought:

 game.show_long_text("Player wins", DialogLayout.BOTTOM)

 if result == SpriteKind.Cross:

 game.show_long_text("Computer wins", DialogLayout.BOTTOM)

 if result == SpriteKind.Draw:

 game.show_long_text("Game drawn", DialogLayout.BOTTOM)

 if result != None:

 start_new_game()

Step 9 – Getting the computer to play
All that remains now is to add the code to let the computer play. As in step 8, we will modify the

play_move function to add the highlighted code as well as add the new play_computer function.

def play_move(x, y, kind):

 if can_play_here(x, y):

 piece = CurrentPlayer.sprite

 piece = board[x][y]

 piece.set_kind(kind)

 if kind == SpriteKind.Nought:

 piece.set_image(Nought)

 else:

 piece.set_image(cross)

 # If there was a result then start a new game otherwise

 # setup the next move and (if it is the computers turn)

 # play the computers move.

 result = get_result()

 if result == SpriteKind.Nought:

 game.show_long_text("Player wins", DialogLayout.BOTTOM)

 if result == SpriteKind.Cross:

 game.show_long_text("Computer wins", DialogLayout.BOTTOM)

 if result == SpriteKind.Draw:

 game.show_long_text("Game drawn", DialogLayout.BOTTOM)

 if result != None:

 start_new_game()

 else:

 setup_next_player()

 # Play computer

 if CurrentPlayer.kind == SpriteKind.Cross:

 play_computer()

OXO - Python – Microsoft Arcade

13

This plays the computers move.

def play_computer():

 hide_selector()

 # Simulate thinking

 pause(1000)

 # Check for computer player which is a random mover

 while CurrentPlayer.kind == SpriteKind.Cross:

 x = randint(0, 2)

 y = randint(0, 2)

 play_move(x, y, SpriteKind.Cross)

 show_selector()

Extending the game
There are many ways that this game can be extended. Just a few ideas are given below.

• Enhance the graphics to make the game look prettier

• Add in a title screen

• Add in sound effects

• Make the computer a smart AI that is impossible to beat

• Display the total number of games played and the Win/Draw/Lose amounts.

• Give the game a 2-Player (humans) option.

• Play as Crosses.

OXO - Python – Microsoft Arcade

14

Extra – Getting the computer to play against itself
If you want a bit of fun, you can change the game so that the computer plays against itself. The code

below shows how to modify the play_move function. Then there are the two copies of the

play_computer method renamed to play_computer_x and play_computer_o that allow the

computer to play as Crosses or Noughts. It plays fast and is only slowed down so you can see it (the

pause(100)). See if you can replace the random move algorithm with a better strategy that wins

more often.

def play_move(x, y, kind):

 if can_play_here(x, y):

 piece = CurrentPlayer.sprite

 piece = board[x][y]

 piece.set_kind(kind)

 if kind == SpriteKind.Nought:

 piece.set_image(Nought)

 else:

 piece.set_image(cross)

 result = get_result()

 if result != None:

 pause(100)

 start_new_game()

 else:

 setup_next_player()

This plays the computers move.

def play_computer_x():

 hide_selector()

 # Check for computer player which is a random mover

 while CurrentPlayer.kind == SpriteKind.Cross:

 x = randint(0, 2)

 y = randint(0, 2)

 play_move(x, y, SpriteKind.Cross)

 show_selector()

def play_computer_o():

 hide_selector()

 # Check for computer player which is a random mover

 while CurrentPlayer.kind == SpriteKind.Nought:

 x = randint(0, 2)

 y = randint(0, 2)

 play_move(x, y, SpriteKind.Nought)

 show_selector()

while True:

 if CurrentPlayer.kind == SpriteKind.Cross:

 play_computer_x()

 else:

 play_computer_o()

